

IoT for Development: Building a Classification Algorithm to Help Beekeepers Detect Honeybee Health Problems Early

Antonio Rafael Braga, Edgar E. Hassler, Danielo G. Gomes, Breno M. Freitas, Joseph A. Cazier

Outline

- Introduction
- Related works
- Materials and Methods
 - Dataset
 - Preprocessing
 - Exploratory Data Analysis (EDA)
 - Scatter plot
 - Basic Statistics
 - Detecting and removing outliers
 - Dada resizing (standardization)
- Machine Learning Strategies
 - Classification Algorithms
 - Evaluation Metrics
- Experiment Setup
- Results
- Conclusion

Introdução

- It is estimated that bees are responsible for a \$18 billion in pollination service;
- Despite the growing number of colonies in the US, beekeepers lose an average of 30% of their colonies each winter;
- In Brazil, in recent years, Northeastern semi-arid beekeepers have suffered severe losses due to *absconding*.

Fonte:

http://g1.globo.com/natureza/noticia/2013/09/cienci a-busca-causa-de-colapso-das-colonias-de-abelha -no-mundo.html

Introdução

- To try to identify problems in the colonies in advance, the beekeeper usually performs a **inspection**. But:
 - stressful;
 - cause microclimate imbalance;
 - disturb the work of bees;
 - disrupts the organization of the colony;
 - can kill workers or even the queen crushed by removing and inserting the frames.

Introdução

- Sensors in the beehives can reduce the periodicity of physical management;
- Using the Internet of Things (IoT) it is possible monitorate:
 - temperature, humidity, carbon dioxide (CO2) and oxygen concentration, hive mass, image, sound, and so on.

• Questão de pesquisa

 "Is it possible to identify health status of *Apis mellifera* colonies through sensors data (internal and external) and inspection data?"

Related Works

	Internal data	Internal and external data	Internal, external and inspection data		
Kridi et al. 2014	\checkmark	-	-		
Kviesis and Zacepins 2016	\checkmark	-	-		
Carvalho et al. 2018	\checkmark	-	-		
Robles-Guerrero et al. 2019	\checkmark	-	-		
Maciel et al. 2018	\checkmark	V	-		
Este trabalho	\checkmark	V	\checkmark		
Table 1. Related works summary					

Materiais e Métodos

- Dataset
 - Bayer Bee Care Center;
 - Located in Durham, Carolina do Norte, EUA;
 - Colony of *Apis mellifera;*
 - National Weather Service (NWS);
 - 6 months of monitoring;
 - Weekly inspection;

Sensors data

- Internal sensors
 - bees cluster temperature;
 - bees cluster humidity;
 - beehive temperature;
 - beehive humidity;
 - beehive weight.
- External sensores
 - external temperature;
 - dew point;
 - pressure;
 - wind speed;
 - precipitation per hour.

https://www.climaeambiente.com.br/prod.idproduto.3730043, estacao-meteorologica-estacao-meteorologica-vantage-pro2 -davis--300-metros----rad--solar---k6162nouv

Healthy Colony Checklist

- 1 All stages of brood;
- 2 Sufficient adult bees;
- 3 A young (<1 year old), productive, laying queen;
- 4 Sufficient nutritious water, forage, and food stores;
- 5 Presence of stressors;
- 6 Suitable space.

HEAL	THY COLONY CH	IECKLIST	opened, and as a summary of more detailed assessmen results should answer the questions 1) Is the colony hea If not, why?, and 3) What needs to be done before the ne
Date:			weekly assesment to correct the problem?
Apiary ID:	Hive ID:		Number frames in brood box 2 (upper):
Observer:	Recorder:		Number of frames in brood box 1 (lower):
For a colo	ny to be considered "healthy", it i	must satisfy ALL or	the following conditions, as seasonally appropriate
Condition			
Met?*	Condition to Assess		Notes, Problems Observed & Management Nee
	1 - All stages of brood and in appropriate amounts (Eggs 1-3 Pupae 1-11)?	stars present in 3, Larvae 1-6,	
	2 - Sufficient adult bees and care for brood and perform all colony?**	age structure to tasks of the	
	3 - A young (<1 yr old), productive, laying queen present? (Color Code Guide: Blue(0/5), White(1/6), Yellow(2/7), Red(3/8), Green(4/9))		
	4 - Sufficient nutritious water, t stores available (inside and/or and young brood being fed?	forage, and food outside the hive),	
	5 - No (apparent) stressors p lead to reduced colony survival potential?***	resent that would I and/or growth	
	6 - Suitable space (not too mu current & near-term expected o sanitary, defendable, and room	uch or too little) for colony size that is n for egg laying?	
	 √ = Yes; X = No; na = Not Assessed; l Including: feeding brood, caring for qu If unsure, follow up with more detailed 	Use "?" only if unsure an een, thermoregulation, assessment as soon a	d follow up as needed. foraging, house cleaning, undertaking, guarding. s possible.
General No Current hive	otes and Observations weight (Ib / kg):; Cha	ange from last meas	sure (lb / kg):

Health Status

- To calculate the colony health status, for each HCC feature was given binary value.
 - If all items are ok (receive value 1) the colony is classified as healthy, class C3;
 - If 1 or 2 items are not ok (receive value 0), the colony is classified às attention, class C2;
 - If **3** or **4** items **are not ok** (receive value 0), the colony is classified as not healthy, **class C1**;
 - And, if more than **5** items **are not ok** (receive value 0), the colony is classified as sick, **class C0**.

Preprocessing

- Exploratory Data Analysis (EDA)
 - mean, standard deviation, interquartile analysis and obliquity;
- Scatter plot

Preprocessing

- Basic Statistics
- Detecting and removing outliers (interquartile)
 - \circ [Q1 1.5 × (Q3 Q1),
 - \circ Q3 + 1.5 × (Q3 Q1)]
- Dada resizing (standardization)

$$x_{new} = \frac{x - \mu}{\sigma}$$

14	Temp-Btm(F)	Temp-Brood(F)	Temp-Hive(F)	BRH(%)	HRH(%)	Weight(lbs)
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	76.143333	87.266667	84.062778	58.772222	56.526111	47.710556
std	6.921548	7.086489	9.161134	6.393345	7.795260	7.219639
min	54.800000	71.900000	71.300000	27.000000	25.100000	27.900000
25%	72.650000	84.525000	72.700000	55.675000	53.400000	43.575000
50%	77.300000	89.200000	88.050000	60.100000	57.850000	46.100000
75%	81.025000	92.700000	92.700000	62.900000	61.850000	51.725000
max	88.100000	95.400000	95.100000	70.600000	69.800000	64.900000

Machine Learning Strategies

- Classification Algorithms
 - Naive Bayes (NB): is based on the Bayes Theorem to generate predictions for each observation by classifying a sample into a group that is most likely to have it;
 - k-Nearest Neighbors (kNN): The classification is then performed according to the highest number of k's closest neighbors belonging to the same class;
 - Random Forest (RF): is based on a group (or forest) of decision trees used to generate the classifications;
 - Neural Networks (NN): is based on a metaphor of the behavior of the brain.

Machine Learning Strategies

- Evaluation Metrics
 - Classification Accuracy (CA): is the accuracy of the classification model.

 $CA = \frac{vp + vn}{tp + tn + fp + fn}$

 Precision: expressed the proportion of correctly classified samples, considering the set of all samples classified (correctly and incorrectly).

$$precision = \frac{tp}{tp + fp}$$

 Recall: or true positive rate explains how effectively the classifier identifies positive predictions.

$$recall = \frac{tp}{tp + fn}$$

• F1-score: is a way of balancing Precision and Sensitivity.

$$F1\text{-}score = 2 * \frac{precision * recall}{precision * recall}.$$

tp = true positive, *tn* = true negative, *fp* = false positive, and *fn* = false negative

Experiment Setup

- Data Labeling
 - The classes were **obtained** through the inspection worksheet by overlapping process between sensed and inspection data.
 - The classes were **assigned** in the sensors samples subsequent to an inspection in such a way that it remained the same between one inspection and another until the state of the colony changed.
- Data Splitting
 - 60% to train, 20% to validation, and 20% to test with 10-fold cross-validation.
- Hyper-parameters
 - Naive Bayes: performed 50 times;
 - k-NN: k = 1;
 - Randon Forest: 76 trees;
 - Neural Network: architecture 1:5:2:1, i. e., 2 hidden layers (with 5 and 2 neurons).

• NB and kNN Confusion matrices

	Со	C1	C2	C3
Со	2	0	0	0
C1	0	5	1	0
C2	0	2	80	15
C3	0	0	34	41
Table 4. NB Confusion Matrix				

	Со	C1	C2	C3
Со	2	0	0	0
C1	0	4	1	1
C2	0	0	78	19
C3	0	0	19	56
Table 5. kNN Confusion Matrix				

• RF and NN Confusion matrices

	Со	C1	C2	C3
Со	2	0	0	0
C1	0	4	1	1
C2	0	0	75	22
C3	0	0	18	55
Table 6. RF Confusion Matrix				

Co C1 C2 C3 Co 0 0 0 2 C1 6 0 0 0 C2 **78** 0 0 19 C3 61 0 0 14

 Table 7. NN Confusion Matrix

• Metrics

	СА	Precision	Recall	F1-score
NB	60.11%	0.59	0.72	0.65
kNN	80.04%	0.80	0.80	0.79
RF	78.20%	0.78	0.78	0.78
NN	77.22%	0.77	0.75	0.76
			•_ • •	• • •

Tabela 8. Métricas de avaliação da acurácia dos algoritmos de classificação.

• Accuracies Plot

Boxplot with the success rate of the classification algorithms.

Conclusion

- We present a machine-learning approach to predicting bee colony health status *Apis mellifera*;
- Were used data from internal and external sensors from a hive that was monitored for a period of 6 months;
- Was generated 4 classifications models from Naive Bayes, k-Nearest Neighbors, Random Forest e Neural Networks;
- We get hit rate that reached 80% with kNN algorithm;
- Thus, the answer for the research question is YES. So, from sensors and inspection data it is possible determine the health state of a bee colony *Apis mellifera* with high precision;

